Inorg. Chem. **2007**, 46, 9510−9512

Electrochemical Behavior of an Aminotrithioether Ligand: Copper(II)-Mediated Oxidative C−**C Bond Formation**

Rau´ l Huerta,† Aaro´ n Flores-Figueroa,† Vı´ctor M. Ugalde-Saldı´var,‡ and Ivan Castillo*,†

Instituto de Quı´*mica and Facultad de Quı*´*mica, Di*V*isio*´*n de Estudios de Posgrado, Uni*V*ersidad Nacional Auto*´*noma de Me*´*xico, Ciudad Uni*V*ersitaria, Me*´*xico D.F., 04510 Me*´*xico*

Received May 15, 2007

A neutral aminotrithioether interacts with Cuⁱ, generating a coordination polymer in the solid state. Electrochemical studies indicate that the ligand is prone to oxidation by Cu^{II}, which results in a novel C−C bond formation reaction.

Thioether ligands have raised interest in recent years because of their involvement in several types of metalloenzyme active sites. $1-4$ Among the inorganic models developed to mimic the properties of these enzymes, polythioethers provide a sulfur-rich environment around biologically relevant metal centers.⁵⁻¹⁷ In the specific case of trithioethers,

† Instituto de Quı´mica.

- [‡] Facultad de Química, División de Estudios de Posgrado.
- (1) Solomon, E. I.; Szilagyi, R. K.; George, S. D.; Basumallick, L. *Chem.*
- *Re*V. **²⁰⁰⁴**, *¹⁰⁴*, 419-458. (2) Prigge, S. T.; Eipper, B.; Mains, R.; Amzel, L. M. *Science* **2004**, *304*,
- 864-867.
(3) Rorabacher, D. B. Chem. Rev. 2004, 104, 651-697.
- (3) Rorabacher, D. B. *Chem. Re*V. **²⁰⁰⁴**, *¹⁰⁴*, 651-697.
- (4) Klinman, J. P. *J. Biol. Chem*. **²⁰⁰⁶**, *²⁸¹*, 3013-3016. (5) Chatt, J.; Leigh, G. J.; Storace, A. P. *J. Chem. Soc. A* **¹⁹⁷¹**, 1380- 1389.
- (6) Sellmann, D.; Schwarz, J. *J. Organomet. Chem*. **¹⁹⁸³**, *²⁴¹*, 343- 361.
- (7) Riley, D. P.; Oliver, J. D. *Inorg. Chem*. **¹⁹⁸⁶**, *²⁵*, 1814-1821.
- (8) Barton, A. J.; Connolly, J.; Levason, W.; Mendia-Jalon, A.; Orchard, S. D.; Reid, G. *Polyhedron* **²⁰⁰⁰**, *¹⁹*, 1373-1379.
- (9) Boardman, B.; Hanton, M. J.; van Rensburg, H.; Tose, R. P. *Chem. Commun*. **²⁰⁰⁶**, 2289-2291.
- (10) Ge, P.; Haggerty, B. S.; Rheingold, A. L.; Riordan, C. G. *J. Am. Chem. Soc*. **¹⁹⁹⁴**, *¹¹⁶*, 8406-8407.
- (11) Ohrenberg, C.; Saleem, M. M.; Riordan, C. G.; Yap, G. P. A.; Verma, A. K.; Rheingold, A. L. *Chem. Commun*. **¹⁹⁹⁶**, 1081-1082.
- (12) Schebler, P. J.; Mandimutsira, B. S.; Riordan, C. G.; Liable-Sands, L. M.; Incarvito, C. D.; Rheingold, A. L. *J. Am. Chem. Soc*. **2001**,
- *¹²³*, 331-332. (13) DuPont, J. A.; Coxey, M. B.; Schebler, P. J.; Incarvito, C. D.; Dougherty, W. G.; Yap, G. P. A.; Rheingold, A. L.; Riordan, C. G. *Organometallics* **²⁰⁰⁷**, *²⁶*, 971-949.
- (14) Yim, H. W.; Tran, L. M.; Dobbin, E. D.; Rabinovich, D.; Liable-Sands, L. M.; Incarvito, C. D.; Lam, K.-C.; Rheingold, A. L. *Inorg. Chem*. **¹⁹⁹⁹**, *³⁸*, 2211-2215.
- (15) Yim, H. W.; Tran, L. M.; Pullen, E. E.; Rabinovich, D.; Liable-Sands, L. M.; Concolino, T. E.; Rheingold, A. L. *Inorg. Chem*. **1999**, *38*, ⁶²³⁴-6239. (16) Weidner, T.; Kra¨mer, A.; Bruhn, C.; Zharnikov, M.; Shaporenko, A.;
- Siemeling, U.; Träger, F. *Dalton Trans.* **2006**, 2767-2777.
- (17) Ohrenberg, C.; Liable-Sands, L. M.; Rheingold, A. L.; Riordan, C. G. *Inorg. Chem*. **²⁰⁰¹**, *⁴⁰*, 4276-4283.
-

the ethylene-bridged tripodal $NS₃$ ligands employed by the group of Rorabacher form stable complexes with copper, $18-20$ and their electronic properties resemble those of type 1 copper sites in metalloenzymes.21,22 Related anionic and neutral tripodal trithioethers have been used to prepare monomeric, oligomeric, and polymeric Cu^I complexes (Chart 1).¹⁰⁻¹⁷ In contrast, attempts to prepare cupric analogues have been unsuccessful, and the observed reduction of Cu^{II} to Cu^I indicates ligand-based oxidation. 11 This raises the question of whether the differences in coordination properties between the ethylene- and methylene-bridged trithioethers toward Cu^{II} are due to the lack of a bridgehead N donor in the latter or to the intrinsic reactivity of the $E-CH_2-S$ linker ($E = B$, C, Si). In order to discriminate between the two scenarios, we herein report the synthesis of a methylene-bridged aminotrithioether ligand, its reactivity toward Cu^I and Cu^I , and the spectroscopic and structural characterization of the products.

The aminotrithioether (**LMe**) was obtained by acidcatalyzed condensation of 2,4-dimethylbenzenethiol and hexamethylenetetramine (eq 1). The reaction of **LMe** with an equimolar amount of $[Cu(CH₃CN)₄]PF₆$ results in a yellow microcrystalline material formulated as $[L^{Me}Cu]PF_6(1)$ based on combustion analysis. ¹ H NMR spectra of acetonitrile-*d*³ solutions of L^{Me} with increasing amounts of $\lbrack Cu(CH_3CN)_4 \rbrack$ - PF_6 (0.5-2.0 equiv) reveal only one set of resonances that do not change significantly, even at -40 °C, consistent with the presence of several coexisting and rapidly exchanging species.²³ Some of the complexes present in solution were detected by mass spectrometry; electrospray ionization mass spectrometry (ESI-MS) spectra of **1** contain peaks corre-

- (18) Ambundo, E. A.; Deydier, M.-V.; Grall, A. J.; Aguera-Vega, N.; Dressel, L. T.; Cooper, T. H.; Heeg, M. J.; Ochrymowycz, L. A.; Rorabacher, D. B. *Inorg. Chem*. **¹⁹⁹⁹**, *³⁸*, 4233-4242.
- (19) Ambundo, E. A.; Ochrymowycz, L. A.; Rorabacher, D. B. *Inorg. Chem*. **²⁰⁰¹**, *⁴⁰*, 5133-5138. (20) Ambundo, E. A.; Yu, Q.; Ochrymowycz, L. A.; Rorabacher, D. B.
- *Inorg. Chem*. **²⁰⁰³**, *⁴²*, 5267-5273.
- (21) Holland, P. L.; Tolman, W. B. *J. Am. Chem. Soc*. **²⁰⁰⁰**, *¹²²*, 6331- 6332.
- (22) Aboelella, N. W.; Gherman, B. F.; Hill, L. M. R.; York, J. T.; Holm, N.; Young, V. G., Jr.; Cramer, C. J.; Tolman, W. B. *J. Am. Chem. Soc*. **²⁰⁰⁶**, *¹²⁸*, 3445-3458.
- (23) See the Supporting Information.

9510 **Inorganic Chemistry,** Vol. 46, No. 23, 2007 10.1021/ic7009429 CCC: \$37.00 © 2007 American Chemical Society Published on Web 10/18/2007

^{*} To whom correspondence should be addressed. E-mail: joseivan@ servidor.unam.mx. Fax: (+52) 55-56162217.

Figure 1. Cyclic voltammograms of (a) L^{Me} , (b) 1, and (c) $|Cu(CH_3 CN$ ₄]PF₆ in CH₃CN with (Bu₄N)PF₆ as the supporting electrolyte.

Chart 1

sponding to copper-containing species at m/z 997 [$\mathbf{L}^{\mathbf{M}\mathbf{e}}_2$ Cu]⁺, and the base peak at m/z 530 $[L^{\text{Me}}\text{Cu}]^{+}$, as well as ligandderived fragments.²³

The electrochemical behavior of **1** in acetonitrile is characterized by six redox processes $(I' - VI'$ in Figure 1b), four of which are ligand-centered, based on cyclic voltammetry studies of **1** and **LMe**. All but one of the processes of **1** are quasi-reversible, with the irreversible anodic peak corresponding to ligand-based oxidation at 0.53 V (II′a, Figure 1b; IIa at 0.56 V for L^{Me}, Figure 1a). The other ligandcentered processes are also displaced to lower potentials upon coordination of Cu^{1,23} The redox process at $E_{1/2} = 0.84$ V
(III' Figure 1b) which is absent in **I**^{Me} was assigned to (III′, Figure 1b), which is absent in **LMe**, was assigned to the Cu^I/Cu^I couple and is shifted to a considerably higher potential compared to that of $\text{[Cu(CH_3CN)_4]PF}_6$, $E_{1/2} = 0.56$

Figure 2. ORTEP diagram of a fragment of the polymeric structure of **3** at the 50% probability level. H atoms and a molecule of acetonitrile are omitted for clarity. Selected bond lengths (\hat{A}) and angles (deg): Cu1-I1, 2.636(1); Cu1-I#1, 2.674(1); Cu1-S1, 2.304(1); Cu1-S2, 2.326(1); Cu2- I2, 2.651(1); Cu2-I#2, 2.599(1); Cu2-S3, 2.330(1); Cu2-N2, 2.004(2); $I1-Cu1-I#1, 120.57(1); Cu1-I1-Cu#1, 59.43(1); S1-Cu1-S2, 103.12-$ (3); I2-Cu2-I#2, 117.29(2); Cu2-I2-Cu#2, 62.72(2); S3-Cu2-N2, 109.55(7). Color code: C, gray; N, blue; Cu, green; I, pink; S, yellow.

V (III, Figure 1c). Oxidative degradation of **LMe** (see below) precludes measurement of the L^{Me}/Cu^{II} stability constant, which determines the redox potentials in related tripodal ligand/Cu systems. $18,24-26$ Nonetheless, the high redox potential of the Cu^H/Cu^I couple of 1 can be attributed to the thioether donors, which raise the potential relative to N donors, and the $S-Cu-S$ chelate ring size of $6.^{18}$ Because the Cu^H/Cu^I redox potential of 0.84 V is higher than the ligand-centered oxidation at 0.53 V, coordination of Cu^H to **LMe** could induce an intramolecular redox reaction (see below).

To probe further the donor properties of L^{Me} toward Cu^I, **LMe** was treated with 1 equiv of CuI to yield [**LMe**CuI] (**2**), as determined by combustion analysis. ESI-MS spectra of **2** display one copper-containing species $[L^{\text{Me}}\text{Cu}]^+$ at m/z 530.²³

Despite repeated attempts to structurally characterize **1** and **2**, X-ray-quality crystals were obtained from the reaction of L^{Me} with 2 equiv of CuI, which afforded $\{[L^{Me}Cu₂I₂(CH₃ -]$ CN] \cdot CH₃CN_{}n} (3). Its solid-state structure consists of a coordination polymer with bridging iodides and **LMe** acting in a μ - κ ¹, κ ² fashion (Figure 2).²⁷ The independent Cu1 and Cu2 centers are related to additional Cu^I ions by a crystallographic inversion center, generating rhomboidal $Cu₂I₂$ cores with average Cu-S and Cu-I bond lengths similar to those of reported complexes of trithioethers with Cu^I.^{15,28} The lack of bonding between the nearly planar N1 atom (sum of angles $=$ 358 $^{\circ}$) and the Cu centers can be attributed to the highly strained four-membered chelate ring that would result. In addition, the presence of the strongly coordinating iodo ligands could also preclude Cu-N1 bonding.

The solution behavior of **3** is similar to that of **1** and **2**, although the presence of heavier copper-containing species was evidenced by mass spectrometry.²³ Thus, the peaks at

- (24) Karlin, K. D.; Hayes, J. C.; Juen, S.; Hutchison, J. P.; Zubieta, J. *Inorg. Chem*. **¹⁹⁸²**, *²¹*, 4106-4108.
- (25) Karlin, K. D.; Yandell, J. K. *Inorg. Chem*. **¹⁹⁸⁴**, *²³*, 1184-1188.
- (26) Lee, D.-H.; Hatcher, L. Q.; Vance, M. A.; Sarangi, R.; Milligan, A. E.; Narducci Sarjeant, A. A.; Incarvito, C. D.; Rheingold, A. L.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Karlin, K. D. *Inorg.*
- *Chem.* **2007**, *46*, 6056–6068.

(27) Crystal data for **3**: C₃₁H₃₉Cu₂I₂N₃S₃, MW = 930.71 g·mol⁻¹, crystal 0.34 × 0.18 × 0.17 mm³ triclinic, space group \overline{PI} , $a = 10.686(2)$ Å $0.34 \times 0.18 \times 0.17$ mm³, triclinic, space group *P*1, $a = 10.686(2)$ Å, *b* = 13.399(3) Å, *c* = 14.177(3) Å, $\alpha = 84.473(3)^\circ$, $\beta = 68.200(3)^\circ$ *γ* = 73.740(3)°, *V* = 1809.2(7) Å³, *Z* = 2, *T* = 173(2) K, R1 = 0.0221 for $I > 2\sigma(I)$, wR2 = 0.0566 for 6646 reflections.
- (28) Yim, H. W.; Rabinovich, D.; Lam, K.-C.; Golen, J. A.; Rheingold, A. L. *Acta Crystallogr., Sect. E: Struct. Rep. Online* **2003**, *E59*, m556-m558.

Scheme 1

Complexes $1-3$ are stable toward oxidation by O_2 in the solid state: after exposure to air for 7 days, no sign of oxidation to Cu^{II} was found by electron paramagnetic resonance (EPR) spectroscopy. In an aerobic acetonitrile solution, **1** decomposes over a period of 5 days, yielding ArSH (*m*/*z* 138, [ArSH2] ⁺), ArSSAr (*m*/*z* 274), and unidentified copper-containing products.23 Similarly, exposure of acetonitrile solutions of **3** to air led to decomposition, based on UV -vis spectra acquired over 3 weeks.²³ Spectral changes are consistent with ligand-based oxidation, with no bands in the visible region that could be ascribed to $d-d$ transitions of Cu^{II}.

The reduction of Cu^{II} to Cu^I by L^{Me} was evidenced by the bleaching of solutions of $[Cu(H_2O)_6](ClO_4)_2$ and $[Cu (H_2O)_6|Cl_2$. Thus, Cu^H complexes of L^{Me} are not accessible, as is inferred from electrochemical data, in contrast with the reported Cu^{II} complexes of ethylene-bridged NS₃ ligands.^{18,19} This behavior had previously been observed in the reaction of trithioether borates with Cu^{II},¹¹ which leads to unidentified Cu^I products. The reaction of L^{Me} with 1 equiv of $[Cu(H₂O)₆]$ -(ClO4)2 in acetonitrile by ESI-MS shows peaks at *m*/*z* 883, tentatively assigned to $\left[\text{Cu(ArSSAr)}_{3}\right]^{+}$, at m/z 802 for the copper-containing species $[\mathbf{L}'^{\text{Me}}_{2}Cu(CH_{3}CN)_{2}]^{+}$, at *m/z* 747 for an unidentified complex, and at m/z 721 for $[\mathbf{L}'^{\mathbf{Me}}_{2}Cu]^{+}$; fast atom bombardment MS revealed the presence of ArSH and ArSSAr.23

Although the ligand derivative **L**′ **Me** was not isolated (Scheme 1),²³ the reaction of L^{Me} with $1-2$ equiv of [Cu- $(H_2O)_6$ $(CIO_4)_2$ afforded a new compound (4) with two inequivalent aromatic groups, based on the four Ar*Me* singlets in the δ 2.28–2.50 ppm region of ¹H NMR spectra
(ESI MS: m/z 328). The solid atote structure of 4 revealed (ESI-MS: *m*/*z* 328). The solid-state structure of **4** revealed a novel C-C bond formation reaction between one of the

Figure 3. Schematic diagram and ORTEP view of the cation of **4** at the 50% probability level. Selected bond lengths (A) and angles (deg): N3-C2, 1.479(5); N3-C21, 1.467(5); N3-C4, 1.284(5); S1-C2, 1.767(5); S2- C21, 1.791(4); C2-N3-C4, 119.7(4); C2-N3-C21, 117.6(4); C4-N3- C21, 122.6(4).

aromatic rings and a methylene group (Figure 3).²⁹ Few examples of copper-mediated $C-C$ bond formation have been reported, and it appears that the presence of an electrochemically active methylene group is essential.³⁰

The low oxidation potential of **LMe** allows intramolecular electron transfer upon coordination of Cu^{II}. Subsequent heterolytic C(methylene)-S bond cleavage would yield a sulfur-based radical and a nitrogen-stabilized carbocation. Electrophilic aromatic substitution at the 6 position would then lead to $C-C$ bond formation to afford $L^{\prime Me}$ (Scheme
1) $\mathbf{I}^{\prime Me}/\mathbf{C}v^{\text{I}}$ complexes detected by ESI MS could not be 1). L'^{Me}/Cu^I complexes detected by ESI-MS could not be isolated, and $\left[\text{Cu}(CH_3CN)_4\right]ClO_4$ was recovered. On the basis of the redox potentials determined for the electrochemically generated L'^{Me}, further oxidation by a second equiv of Cu^{II} is prohibited. Instead, H-atom abstraction (by the limited amount of ArS• available) followed by oxidation by excess CuII would yield the observed product **4**.

In summary, L^{Me}/Cu^{I} represents a dynamic system with rapidly interconverting complexes in solution. The chelate ring size of 4 does not support Cu^H complexation, in line with previously reported stability trends for related complexes of tripodal ligands.18-20,24-²⁶ Instead, oxidation of **LMe** by Cu^{II} results in an intramolecular C-C bond formation reaction. Efforts to adapt this novel Cu^{II} -promoted transformation to other organic compounds with electrochemically active methylene groups are currently underway.

Acknowledgment. We thank Dr. Rubén A. Toscano for crystallographic work, Virginia Gómez-Vidales for EPR measurements, Carmen Márquez and Luis Velasco for mass spectrometry measurements, and DGAPA-UNAM (IN247402 and IN216806) and Conacyt (195791) for financial support.

Supporting Information Available: Crystal structure information (CIF) and experimental details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC7009429

⁽²⁹⁾ Crystal data for 4: $C_{19}H_{22}CINO_{4}S_{2}$, MW = 427.95 g·mol⁻¹, crystal $0.20 \times 0.06 \times 0.05$ mm³, monoclinic, space group $P\overline{2}_1/c$, $a = 8.887$ -
(3) Å, $b = 14.107(4)$ Å, $c = 16.121(5)$ Å, $\beta = 98.751(5)$ °, $V = 1997.6$ -(3) Å, $b = 14.107(4)$ Å, $c = 16.121(5)$ Å, $\beta = 98.751(5)$ °, $V = 1997.6$ -
(10) Å³, $Z = 4$, $T = 173(2)$ K, R1 = 0.0605 for $I > 2\sigma(I)$, wR2 = 0.1119 for 3643 reflections 0.1119 for 3643 reflections.

⁽³⁰⁾ Kumar Padhi, S.; Manivannan, V. *Inorg. Chem*. **²⁰⁰⁶**, *⁴⁵*, 7994- 7996.